Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Decadal variability in the North Atlantic Ocean impacts regional and global climate, yet changes in internal decadal variability under anthropogenic radiative forcing remain largely unexplored. Here we use the Community Earth System Model 2 Large Ensemble under historical and the Shared Socioeconomic Pathway 3-7.0 future radiative forcing scenarios and show that the ensemble spread in northern North Atlantic sea surface temperature (SST) more than doubles during the mid-twenty-first century, highlighting an exceptionally wide range of possible climate states. Furthermore, there are strikingly distinct trajectories in these SSTs, arising from differences in the North Atlantic deep convection among ensemble members starting by 2030. We propose that these are stochastically triggered and subsequently amplified by positive feedbacks involving coupled ocean-atmosphere-sea ice interactions. Freshwater forcing associated with global warming seems necessary for activating these feedbacks, accentuating the impact of external forcing on internal variability. Further investigation on seven additional large ensembles affirms the robustness of our findings. By monitoring these mechanisms in real time and extending dynamical model predictions after positive feedbacks activate, we may achieve skillful long-lead North Atlantic decadal predictions that are effective for multiple decades.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract. Agulhas Leakage transports warm and salty Indian Ocean waters into the Atlantic Ocean and as such is an important component of the global ocean circulation. These waters are part of the upper limb of the Atlantic Meridional Overturning Circulation (AMOC), and Agulhas Leakage variability has been linked to AMOC variability. Agulhas Leakage is expected to increase under a warming climate due to a southward shift in the South Hemisphere westerlies, which could further influence the AMOC dynamics. This study uses a set of high-resolution pre-industrial control and historical and transient simulations with the Community Earth System Model (CESM) with a nominal horizontal resolution of 0.1° for the ocean and sea-ice and 0.25° for the atmosphere and land. At these resolutions, the model represents the necessary scales to investigate the Agulhas Leakage transport variability and its relation to the AMOC. The simulated Agulhas Leakage transport of 19.7 ± 3 Sv lies well within the observed range of 21.3 ± 4.7 Sv. A positive correlation between the Agulhas Current and the Agulhas Leakage is shown, meaning that an increase of the Agulhas Current transport leads to an increase in Agulhas Leakage. The Agulhas Leakage impacts the strength of the AMOC through Rossby wave dynamics that alter the cross-basin geostrophic balance with a time-lag of 2–3 years. Furthermore, the salt flux associated with the Agulhas Leakage influences AMOC dynamics through the salt-advection feedback by reducing the AMOC’s freshwater transport at 34° S. The Agulhas Leakage transport indeed increases under a warming climate due to strengthened and southward shifting winds. In contrast, the Agulhas Current transport decreases, both due to a decrease in the Indonesian Throughflow as well as the strength of the wind-driven subtropical gyre. The increase in Agulhas Leakage is accompanied by a higher salt flux into the Atlantic Ocean, which suggests a destabilisation of the AMOC by salt-advection-feedback.more » « less
- 
            Accurate prediction of sea surface temperatures (SSTs) in the tropical North Atlantic on multiyear timescales is of paramount importance due to its notable impact on tropical cyclone activity. Recent advances in high-resolution climate predictions have demonstrated substantial improvements in the skill of multiyear SST prediction. This study reveals a notable enhancement in high-resolution tropical North Atlantic SST prediction that stems from a more realistic representation of the Atlantic Meridional Mode and the associated wind-evaporation-SST feedback. The key to this improvement lies in the enhanced surface wind response to changes in cross-equatorial SST gradients, resulting from Intertropical Convergence Zone bias reduction when atmospheric model resolution is increased, which, in turn, amplifies the positive feedback between latent and sensible surface heat fluxes and SST anomalies. These advances in high-resolution climate prediction hold promise for extending tropical cyclone forecasts at multiyear timescales.more » « less
- 
            Abstract Upwelling along ocean eastern boundaries is expected to intensify due to coastal wind strengthening driven by increasing land-sea contrast according to the Bakun hypothesis. Here, the latest high-resolution climate simulations that exhibit drastic improvements of upwelling processes reveal far more complex future upwelling changes. The Southern Hemisphere upwelling systems show a future strengthening in coastal winds with a rapid coastal warming, whereas the Northern Hemisphere coastal winds show a decrease with a comparable warming trend. The Bakun mechanism cannot explain these changes. Heat budget analysis indicates that temperature change in the upwelling region is not simply controlled by vertical Ekman upwelling, but also influenced by horizontal heat advection driven by strong near-coast wind stress curl that is neglected in the Bakun hypothesis and poorly represented by the low-resolution models in the Coupled Model Intercomparison Project. The high-resolution climate simulations also reveal a strong spatial variation in future upwelling changes, which is missing in the low-resolution simulations.more » « less
- 
            Abstract In light of rapid environmental change, quantifying the contribution of regional‐ and local‐scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral–algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5–2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.more » « less
- 
            Abstract Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high‐resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
